دزآزما

آموزش بیوشیمی بالینی

روشهای سنجش قدرت آنتی اکسیدان

16 مارس 10

ANTIOXIDANT ASSAYS

From Oxford Biomedical Research: http://www.oxfordbiomed.com/commerce/info/showpage.jsp?page_id=1042&gclid=CL603tWq15kCFRpN5QodpDEpVw/

Background
It is now well established that oxidative stress is a major risk factor for the development of several diseases including atherosclerosis, cardiovascular disease, and cancer. Oxidative stress is the condition in which there is an imbalance between the concentrations of reactive oxygen species (ROS) and physiological antioxidants, resulting in oxidative damage to many biomolecules within the cell. Products of ROS-mediated oxidation are widely used to monitor oxidative stress. However, it is also important to assess the antioxidant capacity of cells and biological fluids, as well as putative “functional foods” to assess their antioxidant capacity. Organisms possess multiple antioxidant systems to help regulate ROS and prevent oxidative stress. In vertebrates, these include enzymes that metabolize ROS, antioxidant proteins, and smaller molecules that are important antioxidants. These antioxidants include hydrophilic as well as lipid-soluble molecules that are localized throughout various tissues and cell types.

Given the multiplicity of antioxidant pathways, their centrality in the prevention of oxidative stress, and the influences of lifestyle and nutritional supplements on an individual’s antioxidant capacity, it is important to be able to quantitatively measure the total antioxidant capacity or antioxidant power in a biological specimen or in nutrients.

ORAC Assay

Assay Principle
The ORAC assay is based on the oxidation of fluorescein by peroxyl radicals via a classic hydrogen atom transfer (HAT) mechanism. Free radicals are generated by the water soluble compound 2,2’-azobis-2-methyl-propanimidamide (AAPH). The peroxyl radicals thus generated quench the fluorescence of fluorescein over time. The antioxidants block the peroxyl radical mediated oxidation of fluorescein until all of the antioxidant activity in the sample is exhausted, after which the AAPH-generated peroxyl radicals react with and quench the fluorescence of fluorescein. The area under the fluorescence decay curve (AUC) is used to quantify the total peroxyl radical antioxidant activity in a sample and is compared to a standard curve obtained using various concentrations of the water soluble vitamin E analog Trolox. Unlike other antioxidant activity assays, the fluorescent ORAC assay provides a direct measurement of antioxidant capacity against hydrophilic chain-breaking peroxyl radicals.

HORAC Assay

Assay Principle
The HORAC assay is based on the oxidation of fluorescein by hydroxyl radicals via a classic hydrogen atom transfer (HAT) mechanism. Free radicals are generated by hydrogen peroxide (H2O2). The hydroxyl radicals thus generated quench the fluorescence of fluorescein over time. The antioxidants block the hydroxyl radical mediated oxidation of fluorescein until all of the antioxidant activity in the sample is exhausted, after which the H2O2 radicals react with and quench the fluorescence of fluorescein. The area under the fluorescence decay curve (AUC) is used to quantify the total hydroxyl radical antioxidant activity in a sample and is compared to a standard curve obtained using various concentrations of gallic acid. Unlike other antioxidant activity assays, the fluorescent HORAC assay provides a direct measurement of antioxidant capacity against hydrophilic chain-breaking hydroxyl radicals.

Total Antioxidant Power

Background
Oxidative stress has been implicated in a number of diseases such as atherosclerosis, chronic inflammatory disease, chronic renal failure, and cancer.  It is a condition where an imbalance exists between the production of reactive oxidizing species and the body’s ability to neutralize these intermediates, resulting in cellular damage. The body has designed several physiological responses to oxidative stress including counterbalances such as enzymes and variously functionalized molecules (see examples below) that effectively neutralize these damaging species. These antioxidants can be either water or lipid soluble, and are localized transiently throughout various tissues, cells and cell types.

Given the multiplicity of antioxidant pathways, their centrality in the prevention of oxidant stress, and the influences of lifestyle and nutritional supplements on an individual’s antioxidant capacity, it is important to be able to quantitatively measure the total antioxidant capacity or antioxidant power with biological specimens.

Assay Principles
The reduction potential of the sample or standard effectively converts Cu+2 to Cu+1, thus changing the ion’s absorption characteristics. This reduced form of copper will selectively form a stable 2:1 complex with the chromogenic reagent with an absorption maximum at ca. 450 nm. A known concentration of uric acid is used to create a calibration curve, with the data being expressed as mM uric acid equivalents or in μM copper reducing equivalents

استرس اکسیداتیو و بیماری ها

16 مارس 10

Oxidative stress in disease

Oxidative stress is thought to contribute to the development of a wide range of diseases including Alzheimer’s disease, Parkinson’s disease, the pathologies caused by diabetes, rheumatoid arthritis, and neurodegeneration in motor neurone diseases. In many of these cases, it is unclear if oxidants trigger the disease, or if they are produced as a consequence of the disease and cause the disease symptoms; as a plausible alternative, a neurodegenerative disease might result from defective axonal transport of mitochondria, which carry out oxidation reactions. One case in which this link is particularly well-understood is the role of oxidative stress in cardiovascular disease. Here, low density lipoprotein (LDL) oxidation appears to trigger the process of atherogenesis, which results in atherosclerosis, and finally cardiovascular disease.

A low calorie diet extends median and maximum lifespan in many animals. This effect may involve a reduction in oxidative stress. While there is good evidence to support the role of oxidative stress in aging in model organisms such as Drosophila melanogaster and Caenorhabditis elegans, the evidence in mammals is less clear. Diets high in fruit and vegetables, which are high in antioxidants, promote health and reduce the effects of aging, however antioxidant vitamin supplementation has no detectable effect on the aging process, so the effects of fruit and vegetables may be unrelated to their antioxidant contents. One reason for this might be the fact that consuming antioxidant molecules such as polyphenols and vitamin E will produce changes in other parts of metabolism, so it may be these other non-antioxidant effects that are the real reason they are important in human nutrition.

Health effects

Disease treatment

The brain is uniquely vulnerable to oxidative injury, due to its high metabolic rate and elevated levels of polyunsaturated lipids, the target of lipid peroxidation. Consequently, antioxidants are commonly used as medications to treat various forms of brain injury. Here, superoxide dismutase mimetics, sodium thiopental and propofol are used to treat reperfusion injury and traumatic brain injury, while the experimental drug NXY-059 and ebselen are being applied in the treatment of stroke. These compounds appear to prevent oxidative stress in neurons and prevent apoptosis and neurological damage. Antioxidants are also being investigated as possible treatments for neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, and as a way to prevent noise-induced hearing loss.

Disease prevention

Antioxidants can cancel out the cell-damaging effects of free radicals. Furthermore, people who eat fruits and vegetables, which are good sources of antioxidants, have a lower risk of heart disease and some neurological diseases, and there is evidence that some types of vegetables, and fruits in general, probably protect against a number of cancers These observations suggested that antioxidants might help prevent these conditions. There is some evidence that antioxidants might help prevent diseases such as macular degeneration, suppressed immunity due to poor nutrition, and neurodegeneration. However, despite the clear role of oxidative stress in cardiovascular disease, controlled studies using antioxidant vitamins have observed no reduction in either the risk of developing heart disease, or the rate of progression of existing disease. This suggests that other substances in fruit and vegetables (possibly flavonoids), or a complex mix of substances, may contribute to the better cardiovascular health of those who consume more fruit and vegetables.

It is thought that oxidation of low density lipoprotein in the blood contributes to heart disease, and initial observational studies found that people taking Vitamin E supplements had a lower risk of developing heart disease. Consequently, at least seven large clinical trials were conducted to test the effects of antioxidant supplement with Vitamin E, in doses ranging from 50 to 600 mg per day. However, none of these trials found a statistically significant effect of Vitamin E on overall number of deaths or on deaths due to heart disease. Further studies have also been negative. It is not clear if the doses used in these trials or in most dietary supplements are capable of producing any significant decrease in oxidative stress.

While several trials have investigated supplements with high doses of antioxidants, the “Supplémentation en Vitamines et Mineraux Antioxydants” (SU.VI.MAX) study tested the effect of supplementation with doses comparable to those in a healthy diet. Over 12,500 French men and women took either low-dose antioxidants (120 mg of ascorbic acid, 30 mg of vitamin E, 6 mg of beta carotene, 100 μg of selenium, and 20 mg of zinc) or placebo pills for an average of 7.5 years. The investigators found there was no statistically significant effect of the antioxidants on overall survival, cancer, or heart disease. However, a subgroup analysis showed a 31% reduction in the risk of cancer in men, but not women.

Many nutraceutical and health food companies now sell formulations of antioxidants as dietary supplements and these are widely used in industrialized countries. These supplements may include specific antioxidant chemicals, like resveratrol (from grape seeds or knotweed roots), combinations of antioxidants, like the “ACES” products that contain beta carotene (provitamin A), vitamin C, vitamin E and Selenium, or herbs that contain antioxidants – such as green tea and jiaogulan. Although some levels of antioxidant vitamins and minerals in the diet are required for good health, there is considerable doubt as to whether antioxidant supplementation is beneficial, and if so, which antioxidant(s) are beneficial and in what amounts.

It has been suggested that moderate levels of oxidative stress may increase life expectancy in the worm Caenorhabditis elegans, by inducing a protective response to increased levels of reactive oxygen species. However, the suggestion that increased life expectancy comes from increased oxidative stress conflicts with results seen in the yeast Saccharomyces cerevisiae, and the situation in mammals is even less clear. However, antioxidant supplements do not appear to increase life expectancy.

Physical exercise

During exercise, oxygen consumption can increase by a factor of more than 10. This leads to a large increase in the production of oxidants and results in damage that contributes to muscular fatigue during and after exercise. The inflammatory response that occurs after strenuous exercise is also associated with oxidative stress, especially in the 24 hours after an exercise session. The immune system response to damage done by exercise peaks 2 to 7 days after exercise, the period during which adaptation resulting in greater fitness is greatest. During this process, free radicals are produced by neutrophils to remove damaged tissue. As a result, excessive antioxidant levels have the potential to inhibit recovery and adaptation mechanisms.

The evidence for benefits from antioxidant supplementation in vigorous exercise is mixed. There is strong evidence that one of the adaptations resulting from exercise is a strengthening of the body’s antioxidant defenses, particularly the glutathione system, to regulate the increased oxidative stress. This effect may be to some extent protective against diseases which are associated with oxidative stress, which would provide a partial explanation for the lower incidence of major diseases and better health of those who undertake regular exercise.

However, no benefits for physical performance to athletes are seen with vitamin E supplementation. Indeed, despite its key role in preventing lipid membrane peroxidation, 6 weeks of vitamin E supplementation had no effect on muscle damage in ultramarathon runners. Although there appears to be no increased requirement for vitamin C in athletes, there is some evidence that vitamin C supplementation increased the amount of intense exercise that can be done and vitamin C supplementation before strenuous exercise may reduce the amount of muscle damage. However, other studies found no such effects, and some research suggests that supplementation with amounts as high as 1000 mg inhibits recovery.[163]

Adverse effects

Relatively strong reducing acids can have antinutrient effects by binding to dietary minerals such as iron and zinc in the gastrointestinal tract and preventing them from being absorbed. Notable examples are oxalic acid, tannins and phytic acid, which are high in plant-based diets. Calcium and iron deficiencies are not uncommon in diets in developing countries where less meat is eaten and there is high consumption of phytic acid from beans and unleavened whole grain bread.

Nonpolar antioxidants such as eugenol, a major component of oil of cloves have toxicity limits that can be exceeded with the misuse of undiluted essential oils. Toxicity associated with high doses of water-soluble antioxidants such as ascorbic acid are less of a concern, as these compounds can be excreted rapidly in urine. More seriously, very high doses of some antioxidants may have harmful long-term effects. The beta-Carotene and Retinol Efficacy Trial (CARET) study of lung cancer patients found that smokers given supplements containing beta-carotene and vitamin A had increased rates of lung cancer. Subsequent studies confirmed these adverse effects.[173]

These harmful effects may also be seen in non-smokers, as a recent meta-analysis including data from approximately 230,000 patients showed that β-carotene, vitamin A or vitamin E supplementation is associated with increased mortality but saw no significant effect from vitamin C. No health risk was seen when all the randomized controlled studies were examined together, but an increase in mortality was detected only when the high-quality and low-bias risk trials were examined separately. However, as the majority of these low-bias trials dealt with either elderly people, or people already suffering disease, these results may not apply to the general population. This meta-analysis was later repeated and extended by the same authors, with the new analysis published by the Cochrane Collaboration; confirming the previous results. These two publications are consistent with some previous meta-analyzes that also suggested that Vitamin E supplementation increased mortality, and that antioxidant supplements increased the risk of colon cancer. However, the results of this meta-analysis are inconsistent with other studies such as the SU.VI.MAX trial, which suggested that antioxidants have no effect on cause-all mortality. Overall, the large number of clinical trials carried out on antioxidant supplements suggest that either these products have no effect on health, or that they cause a small increase in mortality in elderly or vulnerable populations.

While antioxidant supplementation is widely used in attempts to prevent the development of cancer, it has been proposed that antioxidants may, paradoxically, interfere with cancer treatments. This was thought to occur since the environment of cancer cells causes high levels of oxidative stress, making these cells more susceptible to the further oxidative stress induced by treatments. As a result, by reducing the redox stress in cancer cells, antioxidant supplements could decrease the effectiveness of radiotherapy and chemotherapy. However, the evidence is mixed, and some reviews indicate that antioxidants could reduce side effects or increase survival times.

Measurement and levels in food

Measurement of antioxidants is not a straightforward process, as this is a diverse group of compounds with different reactivities to different reactive oxygen species. In food science, the oxygen radical absorbance capacity (ORAC) has become the current industry standard for assessing antioxidant strength of whole foods, juices and food additives. Other measurement tests include the Folin-Ciocalteu reagent, and the Trolox equivalent antioxidant capacity assay. The CAP-e assay measures antioxidants that are available to enter and protect live cells.

Antioxidants are found in varying amounts in foods such as vegetables, fruits, grain cereals, legumes and nuts. Some antioxidants such as lycopene and ascorbic acid can be destroyed by long-term storage or prolonged cooking. Other antioxidant compounds are more stable, such as the polyphenolic antioxidants in foods such as whole-wheat cereals and tea. In general, processed foods contain fewer antioxidants than fresh and uncooked foods, since the preparation processes may expose the food to oxygen.

Some antioxidants are made in the body and are not absorbed from the intestine. One example is glutathione, which is made from amino acids. As any glutathione in the gut is broken down to free cysteine, glycine and glutamic acid before being absorbed, even large oral doses have little effect on the concentration of glutathione in the body. Ubiquinol (coenzyme Q) is also poorly absorbed from the gut and is made in humans through the mevalonate pathway.

Uses in technology

Food preservatives

Antioxidants are used as food additives to help guard against food deterioration. Exposure to oxygen and sunlight are the two main factors in the oxidation of food, so food is preserved by keeping in the dark and sealing it in containers or even coating it in wax, as with cucumbers. However, as oxygen is also important for plant respiration, storing plant materials in anaerobic conditions produces unpleasant flavors and unappealing colors. Consequently, packaging of fresh fruits and vegetables contains an ~8% oxygen atmosphere. Antioxidants are an especially important class of preservatives as, unlike bacterial or fungal spoilage, oxidation reactions still occur relatively rapidly in frozen or refrigerated food. These preservatives include natural antioxidants such as ascorbic acid (AA, E300) and tocopherols (E306), as well as synthetic antioxidants such as propyl gallate (PG, E310), tertiary butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA, E320) and butylated hydroxytoluene (BHT, E321).

The most common molecules attacked by oxidation are unsaturated fats; oxidation causes them to turn rancid. Since oxidized lipids are often discolored and usually have unpleasant tastes such as metallic or sulfurous flavors, it is important to avoid oxidation in fat-rich foods. Thus, these foods are rarely preserved by drying; instead, they are preserved by smoking, salting or fermenting. Even less fatty foods such as fruits are sprayed with sulfurous antioxidants prior to air drying. Oxidation is often catalyzed by metals, which is why fats such as butter should never be wrapped in aluminium foil or kept in metal containers. Some fatty foods such as olive oil are partially protected from oxidation by their natural content of antioxidants, but remain sensitive to photooxidation. Antioxidant preservatives are also added to fat-based cosmetics such as lipstick and moisturizers to prevent rancidity.

Industrial uses

Antioxidants are frequently added to industrial products. A common use is as stabilizers in fuels and lubricants to prevent oxidation, and in gasolines to prevent the polymerization that leads to the formation of engine-fouling residues.

They are widely used to prevent the oxidative degradation of polymers such as rubbers, plastics and adhesives that causes a loss of strength and flexibility in these materials. Polymers containing double bonds in their main chains are especially susceptible to oxidation and ozonolysis. Solid polymer products start to crack on exposed surfaces as the material degrades and the chains unzip. The mode of cracking varies between oxygen and ozone attack, the former causing a “crazy paving” effect, while ozone attack produces deeper cracks aligned at right angles to the tensile strain in the product. Ozone cracking is especially damaging to elastomers such as natural rubber, polybutadiene and other double-bonded rubbers. They can be protected by antiozonants. Oxidation and UV degradation are also frequently linked, mainly because UV radiation creates free radicals by bond breakage. The free radicals then react with oxygen to produce peroxy radicals which cause yet further damage, often in a chain reaction. Other polymers susceptible to oxidation include polypropylene and polyethylene. The former is more sensitive owing to the presence of secondary carbon atoms present in every repeat unit. Attack occurs at this point because the free radical formed is more stable than one formed on a primary carbon atom. Oxidation of polyethylene tends to occur at weak links in the chain, such as branch points in low density polyethylene

استرس اکسیداتیو و مکانیسم های آنتی اکسیدان

16 مارس 10

Oxidative stress

From Wikipedia, the free encyclopedia: http://www.wikipedia.org

Oxidative stress is caused by an imbalance between the production of reactive oxygen and a biological system’s ability to readily detoxify the reactive intermediates or easily repair the resulting damage. All forms of life maintain a reducing environment within their cells. This reducing environment is preserved by enzymes that maintain the reduced state through a constant input of metabolic energy. Disturbances in this normal redox state can cause toxic effects through the production of peroxides and free radicals that damage all components of the cell, including proteins, lipids, and DNA.

In humans, oxidative stress is involved in many diseases, such as atherosclerosis, Parkinson’s disease, Heart Failure, Myocardial Infarction, Alzheimer’s disease and chronic fatigue syndrome, but it may also be important in prevention of aging by induction of a process named mitohormesis. Reactive oxygen species can be beneficial, as they are used by the immune system as a way to attack and kill pathogens. Reactive oxygen species are also used in cell signaling. This is dubbed redox signaling.

// Chemical and biological effects

In chemical terms, oxidative stress is a large rise (becoming less negative) in the cellular reduction potential, or a large decrease in the reducing capacity of the cellular redox couples, such as glutathione. The effects of oxidative stress depend upon the size of these changes, with a cell being able to overcome small perturbations and regain its original state. However, more severe oxidative stress can cause cell death and even moderate oxidation can trigger apoptosis, while more intense stresses may cause necrosis.

A particularly destructive aspect of oxidative stress is the production of reactive oxygen species, which include free radicals and peroxides. Some of the less reactive of these species (such as superoxide) can be converted by oxidoreduction reactions with transition metals or other redox cycling compounds (including quinones) into more aggressive radical species that can cause extensive cellular damage. The major portion of long term effects is inflicted by damage on DNA. Most of these oxygen-derived species are produced at a low level by normal aerobic metabolism and the damage they cause to cells is constantly repaired. However, under the severe levels of oxidative stress that cause necrosis, the damage causes ATP depletion, preventing controlled apoptotic death and causing the cell to simply fall apart.

Production and consumption of oxidants

One source of reactive oxygen under normal conditions in humans is the leakage of activated oxygen from mitochondria during oxidative phosphorylation. However, E. coli mutants that lack an active electron transport chain produced as much hydrogen peroxide as wild-type cells, indicating that other enzymes contribute the bulk of oxidants in these organisms. One possibility is that multiple redox-active flavoproteins all contribute a small portion to the overall production of oxidants under normal conditions.

Other enzymes capable of producing superoxide are xanthine oxidase, NADPH oxidases and cytochromes P450. Hydrogen peroxide is produced by a wide variety of enzymes including several oxidases. Reactive oxygen species play important roles in cell signalling, a process termed redox signaling. Thus, to maintain proper cellular homeostasis, a balance must be struck between reactive oxygen production and consumption.

The best studied cellular antioxidants are the enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase. Less well studied (but probably just as important) enzymatic antioxidants are the peroxiredoxins and the recently discovered sulfiredoxin. Other enzymes that have antioxidant properties (though this is not their primary role) include paraoxonase, glutathione-S transferases, and aldehyde dehydrogenases.

Oxidative stress contributes to tissue injury following irradiation and hyperoxia. It is suspected (though not proven) to be important in neurodegenerative diseases including Lou Gehrig’s disease, Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease. Oxidative stress is thought to be linked to certain cardiovascular disease, since oxidation of LDL in the vascular endothelium is a precursor to plaque formation. Oxidative stress also plays a role in the ischemic cascade due to oxygen reperfusion injury following hypoxia. This cascade includes both strokes and heart attacks. Oxidative stress has also been implicated in chronic fatigue syndrome

Antioxidants as supplements

The use of antioxidants to prevent disease is controversial. In a high-risk group like smokers, high doses of beta carotene increased the rate of lung cancer. In less high-risk groups, the use of vitamin E appears to reduce the risk of heart disease. In other diseases, such as Alzheimer’s, the evidence on vitamin E supplementation is mixed. However, AstraZeneca‘s radical scavenging nitrone drug NXY-059 shows some efficacy in the treatment of stroke.

Oxidative stress (as formulated in Harman‘s free radical theory of aging) is also thought to contribute to the aging process. While there is good evidence to support this idea in model organisms such as Drosophila melanogaster and Caenorhabditis elegans, recent evidence from Michael Ristow‘s laboratory suggests that oxidative stress may also promote life expectancy of Caenorhabditis elegans by inducing a secondary response to initially increased levels of reactive oxygen species. This process was previously named mitohormesis or mitochondrial hormesis on a purely hypothetical basis. The situation in mammals is even less clear. Recent epidemiological findings support the process of mitohormesis, and even suggest that antioxidants may increase disease prevalence in humans (although the results were influenced by studies on smokers).

Metal catalysts

Metals such as iron, copper, chromium, vanadium and cobalt are capable of redox cycling in which a single electron may be accepted or donated by the metal. This action catalyzes reactions that produce reactive radicals and can produce reactive oxygen species. The most important reactions are probably Fenton‘s reaction and the Haber-Weiss reaction, in which hydroxyl radical is produced from reduced iron and hydrogen peroxide. The hydroxyl radical then can lead to modifications of amino acids (e.g. meta-tyrosine and ortho-tyrosine formation from phenylalanine), carbohydrates, initiate lipid peroxidation, and oxidize nucleobases. Most enzymes that produce reactive oxygen species contain one of these metals. The presence of such metals in biological systems in an uncomplexed form (not in a protein or other protective metal complex) can significantly increase the level of oxidative stress. In humans, hemochromatosis is associated with increased tissue iron levels, Wilson’s disease with increased tissue levels of copper. and chronic manganism with exposure to manganese ores.

Non-metal redox catalysts

Certain organic compounds in addition to metal redox catalyts can also produce reactive oxygen species. One of the most important classes of these are the quinones. Quinones can redox cycle with their conjugate semiquinones and hydroquinones, in some cases catalyzing the production of superoxide from dioxygen or hydrogen peroxide from superoxide. Oxidative stress generated by the reducing agent uric acid may be involved in the Lesch-Nyhan syndrome, stroke, and metabolic syndrome. Likewise, production of reactive oxygen species in the presence of homocysteine may figure in homocystinuria, as well as atherosclerosis, stroke, and Alzheimers.

Immune defense

The immune system uses the lethal effects of oxidants by making production of oxidizing species a central part of its mechanism of killing pathogens; with activated phagocytes producing both ROS and reactive nitrogen species. These include superoxide (•O2-), nitric oxide (•NO) and their particularly reactive product, peroxynitrite (ONOO-). Although the use of these highly reactive compounds in the cytotoxic response of phagocytes causes damage to host tissues, the non-specificity of these oxidants is an advantage since they will damage almost every part of their target cell. This prevents a pathogen from escaping this part of immune response by mutation of a single molecular target.

DNA oxidation

DNA oxidation is the process of oxidative damage on Deoxyribonucleic Acid. It occurs most readily at guanine residues due to the high oxidation potential of this base relative to cytosine, thymine, and adenine. It is widely believed to be linked to certain disease and cancers.

RNA Oxidation

RNAs in native milieu are exposed to various insults. Among those threats, oxidative stress is one of major reasons that cause damage to RNAs. Level of oxidative stress that cell is enduring is reflected by the quantity of Reactive oxidative species (ROS). ROS are generated from normal oxygen metabolism in cells, recognized as a list of active molecules, such as free radicals O2-, 1O2, H2O2 and, •OH . Nucleic acid can be oxidized by ROS through Fenton reaction.To date, around 20 oxidative lesions have been discovered in DNA. RNAs are likely to be more sensitive to ROS for the following reasons: i) the basically single-stranded structure expose more sites to ROS. ii) compared with nuclear DNA, RNAs are less compartmentalized iii) RNAs distribute broadly in cell not only in nucleus as DNAs do, but also in cytoplasm in large portion. This theory has been supported by a series of discoveries from rat liver, human leukocytes and so on. Actually, monitoring system by applying isotopical label [18O]-H2O2 shows greater oxidation in cellular RNA than in DNA. Oxidation randomly damages RNAs, each attack would bring problem to the normal cellular metabolism. Although alteration of genetic information on mRNA is relative rare, oxidation on mRNAs in vitro and in vivo results in low translation efficiency and aberrant protein products. Though the oxidation strikes the nucleic strands randomly, particular residues are more susceptible to ROS and there are such hotspot sites hit by ROS at high rate. Among all the lesions discovered so far, one of the most abundant lesions in DNA and RNA is the 8-hydroxyguanine. Moreover, 8-hydroxyguanine is the only one measurable among all the RNA lesions. Besides its abundance, 8-hydroxydeoxyguanosine (8-oxodG) and 8-hydroxyguanosine (8-oxoG) are identified as the most detrimental oxidation lesion for its mutagenic effect[8], which this non-canonical counterpart can faultily pair with both adenine and cytosine at the same efficiency. This mis-pairing brings about the alteration in genetic information through the synthesis of DNA and RNA. In RNA, oxidation levels are mainly estimated through 8-oxoG-based assays. So far, approaches developed for directly measure 8-oxoG level include HPLC-based analysis and assays employing monoclonal anti-8-oxoG antibody. The HPLC-based method measures 8-oxoG by electrochemical detector (ECD) and total G by UV detector. Ratio by comparing the two numbers provides the oxidized extent of total the G .Monoclonal anti-8-oxoG mouse antibody is broadly applied to directly detect this residue either on tissue sections or membrane, offering a more visual way to study its distribution not only in tissues but also in discrete subset of DNA or RNA possible . The established indirect techniques are mainly grounded on this lesion’s mutagenic aftermath. One typical example is lacZ assay.This method was firstly set up and described by Taddei and was potentially a powerful tool to understand the oxidation situation both at RNA sequence level and single nucleotide level. Another source of oxidized RNAs is mis-incorporation of oxidized counterpart of single nucleotides. Indeed, the RNA precursor pool size is hundreds size bigger than DNA’s.

Potential factors for RNA quality control There have been furious debates on whether the issue of RNA quality control does exist. However, with the concern of various length of half life of diverse RNA species ranging from several minutes to hours, degradation of defective RNA can not easily be attributed to its transient character anymore. Indeed, reaction with ROS takes only few minutes, which is even shorter than average life-span of the most unstable RNAs. Adding the fact that stable RNA take the lion’s share of total RNA, RNA error deleting become hypercritical and should not be neglected anymore .This theory is upheld by the fact that level of oxidized RNA decreases after removal the oxidative challenge . Some potential facors include ribonucleases, which are suspected to selectively degrade damaged RNAs under stresses. Also enzymes working at RNA precursor pool level,are known to control quality of RNA sequence by changing error precursor to the form that can’t be included directly into nascent strand.

Lipid peroxidation

Lipid peroxidation refers to the oxidative degradation of lipids. It is the process whereby free radicals “steal” electrons from the lipids in cell membranes, resulting in cell damage. This process proceeds by a free radical chain reaction mechanism. It most often affects polyunsaturated fatty acids, because they contain multiple double bonds in between which lie methylene -CH2- groups that possess especially reactive hydrogens. As with any radical reaction the reaction consists of three major steps: initiation, propagation and termination.

// Initiation: Initiation is the step whereby a fatty acid radical is produced. The initiators in living cells are most notably reactive oxygen species (ROS), such as OH·, which combines with a hydrogen atom to make water and a fatty acid radical.

Propagation: The fatty acid radical is not a very stable molecule, so it reacts readily with molecular oxygen, thereby creating a peroxyl-fatty acid radical. This too is an unstable species that reacts with another free fatty acid producing a different fatty acid radical and a lipid peroxide or a cyclic peroxide if it had reacted with itself. This cycle continues as the new fatty acid radical reacts in the same way.

Termination: When a radical reacts it always produces another radical, which is why the process is called a “chain reaction mechanism.” The radical reaction stops when two radicals react and produce a non-radical species. This happens only when the concentration of radical species is high enough for there to be a high probability of two radicals actually colliding. Living organisms have evolved different molecules that speed up termination by catching free radicals and therefore protect the cell membrane. One important such antioxidant is vitamin E. Other anti-oxidants made within the body include the enzymes superoxide dismutase, catalase, and peroxidase.

Hazards

If not terminated fast enough, there will be damage to the cell membrane, which consists mainly of lipids. Phototherapy may cause hemolysis by rupturing red blood cell cell membranes in this way.

In addition, end products of lipid peroxidation may be mutagenic and carcinogenic. For instance, the end product malondialdehyde reacts with deoxyadenosine and deoxyguanosine in DNA, forming DNA adducts to them, primarily M1G.

Tests

Certain diagnostic tests are available for the quantification of the end products of lipid peroxidation, specifically malondialdehyde (MDA) The most commonly used test is called a TBARS Assay.

Antioxidants

An antioxidant is a molecule capable of slowing or preventing the oxidation of other molecules. Oxidation is a chemical reaction that transfers electrons from a substance to an oxidizing agent. Oxidation reactions can produce free radicals, which start chain reactions that damage cells. Antioxidants terminate these chain reactions by removing free radical intermediates, and inhibit other oxidation reactions by being oxidized themselves. As a result, antioxidants are often reducing agents such as thiols or polyphenols.

Although oxidation reactions are crucial for life, they can also be damaging; hence, plants and animals maintain complex systems of multiple types of antioxidants, such as glutathione, vitamin C, and vitamin E as well as enzymes such as catalase, superoxide dismutase and various peroxidases. Low levels of antioxidants, or inhibition of the antioxidant enzymes, causes oxidative stress and may damage or kill cells.

As oxidative stress might be an important part of many human diseases, the use of antioxidants in pharmacology is intensively studied, particularly as treatments for stroke and neurodegenerative diseases. However, it is unknown whether oxidative stress is the cause or the consequence of disease. Antioxidants are also widely used as ingredients in dietary supplements in the hope of maintaining health and preventing diseases such as cancer and coronary heart disease. Although initial studies suggested that antioxidant supplements might promote health, later large clinical trials did not detect any benefit and suggested instead that excess supplementation may be harmful. In addition to these uses of natural antioxidants in medicine, these compounds have many industrial uses, such as preservatives in food and cosmetics and preventing the degradation of rubber and gasoline.

// History

The term antioxidant originally was used to refer specifically to a chemical that prevented the consumption of oxygen. In the late 19th and early 20th century, extensive study was devoted to the uses of antioxidants in important industrial processes, such as the prevention of metal corrosion, the vulcanization of rubber, and the polymerization of fuels in the fouling of internal combustion engines.

Early research on the role of antioxidants in biology focused on their use in preventing the oxidation of unsaturated fats, which is the cause of rancidity.[3] Antioxidant activity could be measured simply by placing the fat in a closed container with oxygen and measuring the rate of oxygen consumption. However, it was the identification of vitamins A, C, and E as antioxidants that revolutionized the field and led to the realization of the importance of antioxidants in the biochemistry of living organisms.

The possible mechanisms of action of antioxidants were first explored when it was recognized that a substance with anti-oxidative activity is likely to be one that is itself readily oxidized. Research into how vitamin E prevents the process of lipid peroxidation led to the identification of antioxidants as reducing agents that prevent oxidative reactions, often by scavenging reactive oxygen species before they can damage cells.

The oxidative challenge in biology

A paradox in metabolism is that while the vast majority of complex life on Earth requires oxygen for its existence, oxygen is a highly reactive molecule that damages living organisms by producing reactive oxygen species. Consequently, organisms contain a complex network of antioxidant metabolites and enzymes that work together to prevent oxidative damage to cellular components such as DNA, proteins and lipids. In general, antioxidant systems either prevent these reactive species from being formed, or remove them before they can damage vital components of the cell. However, since reactive oxygen species do have useful functions in cells, such as redox signaling, the function of antioxidant systems is not to remove oxidants entirely, but instead to keep them at an optimum level.

The reactive oxygen species produced in cells include hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and free radicals such as the hydroxyl radical (·OH) and the superoxide anion (O2). The hydroxyl radical is particularly unstable and will react rapidly and non-specifically with most biological molecules. This species is produced from hydrogen peroxide in metal-catalyzed redox reactions such as the Fenton reaction. These oxidants can damage cells by starting chemical chain reactions such as lipid peroxidation, or by oxidizing DNA or proteins. Damage to DNA can cause mutations and possibly cancer, if not reversed by DNA repair mechanisms, while damage to proteins causes enzyme inhibition, denaturation and protein degradation.

The use of oxygen as part of the process for generating metabolic energy produces reactive oxygen species. In this process, the superoxide anion is produced as a by-product of several steps in the electron transport chain. Particularly important is the reduction of coenzyme Q in complex III, since a highly reactive free radical is formed as an intermediate (Q·). This unstable intermediate can lead to electron “leakage”, when electrons jump directly to oxygen and form the superoxide anion, instead of moving through the normal series of well-controlled reactions of the electron transport chain. Peroxide is also produced from the oxidation of reduced flavoproteins, such as complex I. However, although these enzymes can produce oxidants, the relative importance of the electron transfer chain to other processes that generate peroxide is unclear. In plants, algae, and cyanobacteria, reactive oxygen species are also produced during photosynthesis, particularly under conditions of high light intensity. This effect is partly offset by the involvement of carotenoids in photoinhibition, which involves these antioxidants reacting with over-reduced forms of the photosynthetic reaction centres to prevent the production of reactive oxygen species.

Metabolites

Overview

Antioxidants are classified into two broad divisions, depending on whether they are soluble in water (hydrophilic) or in lipids (hydrophobic). In general, water-soluble antioxidants react with oxidants in the cell cytosol and the blood plasma, while lipid-soluble antioxidants protect cell membranes from lipid peroxidation. These compounds may be synthesized in the body or obtained from the diet. The different antioxidants are present at a wide range of concentrations in body fluids and tissues, with some such as glutathione or ubiquinone mostly present within cells, while others such as uric acid are more evenly distributed. Some antioxidants are only found in a few organisms and these compounds can be important in pathogens and can be virulence factors.

The relative importance and interactions between these different antioxidants is a very complex question, with the various metabolites and enzyme systems having synergistic and interdependent effects on one another. The action of one antioxidant may therefore depend on the proper function of other members of the antioxidant system. The amount of protection provided by any one antioxidant will also depend on its concentration, its reactivity towards the particular reactive oxygen species being considered, and the status of the antioxidants with which it interacts.

Some compounds contribute to antioxidant defense by chelating transition metals and preventing them from catalyzing the production of free radicals in the cell. Particularly important is the ability to sequester iron, which is the function of iron-binding proteins such as transferrin and ferritin. Selenium and zinc are commonly referred to as antioxidant nutrients, but these chemical elements have no antioxidant action themselves and are instead required for the activity of some antioxidant enzymes, as is discussed below.

Ascorbic acid

Ascorbic acid or “vitamin C” is a monosaccharide antioxidant found in both animals and plants. As it cannot be synthesized in humans and must be obtained from the diet, it is a vitamin. Most other animals are able to produce this compound in their bodies and do not require it in their diets. In cells, it is maintained in its reduced form by reaction with glutathione, which can be catalyzed by protein disulfide isomerase and glutaredoxins. Ascorbic acid is a reducing agent and can reduce and thereby neutralize reactive oxygen species such as hydrogen peroxide. In addition to its direct antioxidant effects, ascorbic acid is also a substrate for the antioxidant enzyme ascorbate peroxidase, a function that is particularly important in stress resistance in plants.

Although various antioxidants generally behave synergisticly, ascorbic acid can degrade other antioxidants of the phytochemical family anthocyanin.

Glutathione

Glutathione is a cysteine-containing peptide found in most forms of aerobic life. It is not required in the diet and is instead synthesized in cells from its constituent amino acids. Glutathione has antioxidant properties since the thiol group in its cysteine moiety is a reducing agent and can be reversibly oxidized and reduced. In cells, glutathione is maintained in the reduced form by the enzyme glutathione reductase and in turn reduces other metabolites and enzyme systems as well as reacting directly with oxidants. Due to its high concentration and its central role in maintaining the cell’s redox state, glutathione is one of the most important cellular antioxidants. In some organisms glutathione is replaced by other thiols, such as by mycothiol in the Actinomycetes, or by trypanothione in the Kinetoplastids.

Melatonin

Melatonin is a powerful antioxidant that can easily cross cell membranes and the blood-brain barrier. Unlike other antioxidants, melatonin does not undergo redox cycling, which is the ability of a molecule to undergo repeated reduction and oxidation. Redox cycling may allow other antioxidants (such as vitamin C) to act as pro-oxidants and promote free radical formation. Melatonin, once oxidized, cannot be reduced to its former state because it forms several stable end-products upon reacting with free radicals. Therefore, it has been referred to as a terminal (or suicidal) antioxidant.

Tocopherols and tocotrienols

Vitamin E is the collective name for a set of eight related tocopherols and tocotrienols, which are fat-soluble vitamins with antioxidant properties. Of these, α-tocopherol has been most studied as it has the highest bioavailability, with the body preferentially absorbing and metabolising this form.

It has been claimed that the α-tocopherol form is the most important lipid-soluble antioxidant, and that it protects membranes from oxidation by reacting with lipid radicals produced in the lipid peroxidation chain reaction. This removes the free radical intermediates and prevents the propagation reaction from continuing. This reaction produces oxidised α-tocopheroxyl radicals that can be recycled back to the active reduced form through reduction by other antioxidants, such as ascorbate, retinol or ubiquinol.

However, the roles and importance of the various forms of vitamin E are presently unclear, and it has even been suggested that the most important function of α-tocopherol is as a signaling molecule, with this molecule having no significant role in antioxidant metabolism. The functions of the other forms of vitamin E are even less well-understood, although γ-tocopherol is a nucleophile that may react with electrophilic mutagens, and tocotrienols may be important in protecting neurons from damage.

Pro-oxidant activities

Antioxidants that are reducing agents can also act as pro-oxidants. For example, vitamin C has antioxidant activity when it reduces oxidizing substances such as hydrogen peroxide, however, it will also reduce metal ions that generate free radicals through the Fenton reaction.

2 The relative importance of the antioxidant and pro-oxidant activities of antioxidants are an area of current research, but vitamin C, for example, appears to have a mostly antioxidant action in the body. However, less data is available for other dietary antioxidants, such as vitamin E, or the polyphenols.

Enzyme systems

Overview

As with the chemical antioxidants, cells are protected against oxidative stress by an interacting network of antioxidant enzymes. Here, the superoxide released by processes such as oxidative phosphorylation is first converted to hydrogen peroxide and then further reduced to give water. This detoxification pathway is the result of multiple enzymes, with superoxide dismutases catalysing the first step and then catalases and various peroxidases removing hydrogen peroxide. As with antioxidant metabolites, the contributions of these enzymes to antioxidant defenses can be hard to separate from one another, but the generation of transgenic mice lacking just one antioxidant enzyme can be informative.

Superoxide dismutase, catalase and peroxiredoxins

Superoxide dismutases (SODs) are a class of closely related enzymes that catalyse the breakdown of the superoxide anion into oxygen and hydrogen peroxide. SOD enzymes are present in almost all aerobic cells and in extracellular fluids. Superoxide dismutase enzymes contain metal ion cofactors that, depending on the isozyme, can be copper, zinc, manganese or iron. In humans, the copper/zinc SOD is present in the cytosol, while manganese SOD is present in the mitochondrion. There also exists a third form of SOD in extracellular fluids, which contains copper and zinc in its active sites. The mitochondrial isozyme seems to be the most biologically important of these three, since mice lacking this enzyme die soon after birth. In contrast, the mice lacking copper/zinc SOD (Sod1) are viable but have numerous pathologies and a reduced lifespan (see article on superoxide, while mice without the extracellular SOD have minimal defects (sensitive to hyperoxia). In plants, SOD isozymes are present in the cytosol and mitochondria, with an iron SOD found in chloroplasts that is absent from vertebrates and yeast.

Catalases are enzymes that catalyse the conversion of hydrogen peroxide to water and oxygen, using either an iron or manganese cofactor. This protein is localized to peroxisomes in most eukaryotic cells. Catalase is an unusual enzyme since, although hydrogen peroxide is its only substrate, it follows a ping-pong mechanism. Here, its cofactor is oxidised by one molecule of hydrogen peroxide and then regenerated by transferring the bound oxygen to a second molecule of substrate. Despite its apparent importance in hydrogen peroxide removal, humans with genetic deficiency of catalase — “acatalasemia” — or mice genetically engineered to lack catalase completely, suffer few ill effects.

Peroxiredoxins are peroxidases that catalyze the reduction of hydrogen peroxide, organic hydroperoxides, as well as peroxynitrite. They are divided into three classes: typical 2-cysteine peroxiredoxins; atypical 2-cysteine peroxiredoxins; and 1-cysteine peroxiredoxins. These enzymes share the same basic catalytic mechanism, in which a redox-active cysteine (the peroxidatic cysteine) in the active site is oxidized to a sulfenic acid by the peroxide substrate. Over-oxidation of this cysteine residue in peroxiredoxins inactivates these enzymes, but this can be reversed by the action of sulfiredoxin. Peroxiredoxins seem to be important in antioxidant metabolism, as mice lacking peroxiredoxin 1 or 2 have shortened lifespan and suffer from hemolytic anaemia, while plants use peroxiredoxins to remove hydrogen peroxide generated in chloroplasts.

Thioredoxin and glutathione systems

The thioredoxin system contains the 12-kDa protein thioredoxin and its companion thioredoxin reductase. Proteins related to thioredoxin are present in all sequenced organisms, with plants such as Arabidopsis thaliana having a particularly great diversity of isoforms. The active site of thioredoxin consists of two neighboring cysteines, as part of a highly-conserved CXXC motif, that can cycle between an active dithiol form (reduced) and an oxidized disulfide form. In its active state, thioredoxin acts as an efficient reducing agent, scavenging reactive oxygen species and maintaining other proteins in their reduced state. After being oxidized, the active thioredoxin is regenerated by the action of thioredoxin reductase, using NADPH as an electron donor.

The glutathione system includes glutathione, glutathione reductase, glutathione peroxidases and glutathione S-transferases. This system is found in animals, plants and microorganisms. Glutathione peroxidase is an enzyme containing four seleniumcofactors that catalyzes the breakdown of hydrogen peroxide and organic hydroperoxides. There are at least four different glutathione peroxidase isozymes in animals. Glutathione peroxidase 1 is the most abundant and is a very efficient scavenger of hydrogen peroxide, while glutathione peroxidase 4 is most active with lipid hydroperoxides. Surprisingly, glutathione peroxidase 1 is dispensable, as mice lacking this enzyme have normal lifespans, but they are hypersensitive to induced oxidative stress. In addition, the glutathione S-transferases show high activity with lipid peroxides. These enzymes are at particularly high levels in the liver and also serve in detoxification metabolism